Neuronal Reward and Decision Signals: From Theories to Data.
نویسنده
چکیده
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act.
منابع مشابه
Dopamine neurons learn relative chosen value from probabilistic rewards
Economic theories posit reward probability as one of the factors defining reward value. Individuals learn the value of cues that predict probabilistic rewards from experienced reward frequencies. Building on the notion that responses of dopamine neurons increase with reward probability and expected value, we asked how dopamine neurons in monkeys acquire this value signal that may represent an e...
متن کاملBasal ganglia orient eyes to reward.
Expectation of reward motivates our behaviors and influences our decisions. Indeed, neuronal activity in many brain areas is modulated by expected reward. However, it is still unclear where and how the reward-dependent modulation of neuronal activity occurs and how the reward-modulated signal is transformed into motor outputs. Recent studies suggest an important role of the basal ganglia. Senso...
متن کاملA neuronal reward inequity signal in primate striatum.
Primates are social animals, and their survival depends on social interactions with others. Especially important for social interactions and welfare is the observation of rewards obtained by other individuals and the comparison with own reward. The fundamental social decision variable for the comparison process is reward inequity, defined by an asymmetric reward distribution among individuals. ...
متن کاملNeuronal distortions of reward probability without choice.
Reward probability crucially determines the value of outcomes. A basic phenomenon, defying explanation by traditional decision theories, is that people often overweigh small and underweigh large probabilities in choices under uncertainty. However, the neuronal basis of such reward probability distortions and their position in the decision process are largely unknown. We assessed individual prob...
متن کاملPotential Vulnerabilities of Neuronal Reward, Risk, and Decision Mechanisms to Addictive Drugs
How do addictive drugs hijack the brain's reward system? This review speculates how normal, physiological reward processes may be affected by addictive drugs. Addictive drugs affect acute responses and plasticity in dopamine neurons and postsynaptic structures. These effects reduce reward discrimination, increase the effects of reward prediction error signals, and enhance neuronal responses to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 95 3 شماره
صفحات -
تاریخ انتشار 2015